OSPF

Foundations of computer networks

Properties of OSPF

- Autonomous system is splited into areas
 - area 0 (backbone communication between areas)
 - areas 1 4 294 967 295 (2³²-1)
- Taking into account the status of links (inside area only)
- Flooding of area by routing information
 - link-state advertisements (LSAs)
 - high convergence
 - each router know the topology of its area
- Building the shortest path tree

- internal routers (IR)
- area border routers (ABR)
- backbone routers (BR)

autonomous system boundary router (ASBR)

partitioning of authonomous systems into areas

area 0

communication between autonomous systems

IPv4 − 1, **2**

• Comp

IPv6 - 3

	Ш		
version	type length		
router ID			
area ID			
checksum		authentication type	
authentication			

Message types

- hello (type 1)
- database description (type 2)
- link state request (type 3)
- Link state update (type 4)
- link ackn 5)

To choose from eg.:

none, password,

MD5

- Message types
 - hello (type 1)
 - database description (type 2)
 - link state request (type 3)
 - link state update (type 4)
 - link state acknowledgment (type 5)

Establishes communication and communication parameters:

- broadcast frequency HELLO
 - network mask
- time to recognise the router as the dead
 - the list of neighbors
 - designated router ID
 - backup designated router ID

- Message types
 - hello (type 1)
 - database description (type 2)

Transmit description (structure) of link state database

- link state request (type 3)
- link state update (type 4)
- link state acknowledgment (type 5)

- Message types
 - hello (type 1)
 - database description (type 2)
 - link state request (type 3)
 - link state update (type 4)
 - link state acknowledgment (type 5)

Transfer the selected part of the link state database request

- Message types
 - hello (type 1)
 - database description (type 2)
 - link state request (type 3)
 - link state update (type 4)
 - link state acknowledgment (type 5)

Transfer the selected part of the link state database

- Message types
 - hello (type 1)
 - database description (type 2)
 - link state request (type 3)
 - link state update (type 4)
 - link state acknowledgment (type 5)

Transfer the selected part of the link state database acknowledgment

OSPF does not use the transport-layer protocol, so it must ensure the reliability of the communication by itself

LSA types

The state and cost of the router's links to the area

• LSA of router-

The state and the cost of all routers link

LSA of network

in area (sending by designated router)

A summary of information about routes

LSA summary of IP network

in the area for the adjacent areas (areas

LSA summary of ASBR router

A summary of information about routes in the area for the other areas (AS boundary routers)

LSA outside autonomous system

Information about the locations which are available outside the OSPF network

options	LSA type		
link state ID			
broadcast router ID			
order number			
checksum			
	rate ID t router ID		

routers costs calculation

- Automatic calculation of the cost of a link based on the available bandwidth
 - 1 100 Mb/s
 - 10 10 Mb/s
 - 64 1,544 Mb/s
 - 1768 56 kb/s
- The cost of the default
 - · accepted in the case a small link diversity
 - the cost of the path = hops number * default cost
- Manually fixed costs
 - •

r* default cost

links between routers are

links between conly

considered only

100 Mb/s *w⁻¹

A tree of shortest paths

- Each router has a knowledge of the structure of the area
- Each router builds its tree, in the which is the root
- Router cost is the sum of links costs
- If for the particular destination there are more routes with the same cost
 - all of them are held
 - all of them are in use (load balancing)