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Sequential Estimates of Probability Densities by
Orthogonal Series and Their Application in
Pattern Classification

LESZEK RUTKOWSKI

Abstract— Recursive estimates of probability densities based on orthog-
onal series are proposed. Pattern classifications procedures derived from
these estimates are presented and their asymptotic properties are investi-
gated. For a Haar orthogonal system our procedures are density-free
Bayes risk consistent.

1. INTRODUCTION

Let X,,- - -, X,, be a sequence of independent observations of a
random variable X with Lebesgue density function f on the set
A, where A is a subset of the real line. We assume that f has the
representation

f(x)~ goa,»gj(X), 1
where
aj=Egj(X) )]

and g;(*), j=0,1,2,-- -, is a complete orthonormal system de-
fined on A. As the estimator of a density we can take

R N(n)
f;l(x)= 2 ajngj(x)a (3)

j=0

where .
ap=r 3 g, (%) @

i=1
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and N(n) is a sequence of integers such that
N(n)—>o0 ®)]

as n—oo. Density estimates (3) were introduced by Cencov [3]
and studied by Schwartz [11], Kronmal and Tarter [9], and Bosq
[2] among others.
In this correspondence the following estimator of a probability
density function is proposed,
n N(i)

=7 3 S g (X)), (®)

i=1j=0
Observe that estimator (6) may be expressed as

-1, 1°&
() 2 g (g ()
<

2 n

J(x)=

h

A great advantage of the definition (7) over (3) is that £, can be
computed by making use of the current observation X, and the
preceding estimator f, _,. Thus the unknown probability density
function is estimated sequentially. It should be noted that esti-
mator (7) is analogous to a recursive version of a Parzen—
Rosenblatt kernel estimate, introduced by Wolverton and
Wagner [13], [14],

A= p (* - K(x-X) k). (@)
n nh,,

where the function K, the so-called kernel, and the sequence A,
satisfy suitable conditions. Recently several interesting results
related to the pointwise and the integral convergence of estima-
tor (8) have been obtained by Devroye [5]. For surveys on
commonly used nonparametric probability density estimators,
the reader is referred to Cover [4] and Wegman [12].

It is well known that nonparametric density estimates can be
applied to many engineering problems including pattern classifi-
cation, cluster analysis, and reliability theory. As an example of
these applications we present pattern classification procedures
with class conditional density estimates of type (6). Theorem 1
gives conditions for weak or strong consistency of class density
estimates whereas Theorem 2 establishes Bayes risk consistency
of pattern classification procedures. For a Haar orthogonal
system our procedures are Bayes risk consistent under no restric-
tions imposed on class conditional densities. In [8] and [10] this
problem was also treated by orthogonal series but authors sup-
posed that class conditional densities are square integrable.

In this correspondence we assume that

lg,(x)I<G; ®)

for all xE4 where G, is a sequence of numbers. The condition
(9) is more general than

|g;(x)] < const (9a)

for all x€A4 which was assumed in [2], [3], [9], and [11]. It is
worth recalling that Legendre and Haar orthogonal systems do
not satisfy (9a) at all.

II. PATTERN CLASSIFICATION PROCEDURES

In this section only two category classification problems will
be treated but the results can be extended to the multicategory
problem. Let (7, X)) be a pair of random variables; P(T=k)=p,,
k=1,2, X is A-valued, where 4 is a subset of the real line. Let f
be a conditional density of X given T=k. When f;, p,, k=1,2,
are known, a Bayes decision function,

D(x)=p,fi(x)—p, (%),

classifies every x €4 as coming from class 1 if D(x)> 0 and
from class 2 otherwise. We assume that f,, p,, k=1,2, are
unknown and have a learning sequence,

(Tl’Xl)" T ,(7;,,X,,),

i.e., a sample of independent observations of (7, X) that we wish
to estimate the function D. Let n, be the number of observations
from the class k. Partition observations (X}, - -, X,) into subse-
quences (X{,--+,X,), (X},--+,X2). As estimates of condi-
tional densities we propose

Ay NG)

= 23 g, (XE)g, (%),

k =] jm=m0

(10)

The following theorem establishes weak and strong pointwise
consistency of estimates (10).
Theorem 1: Assume that (5) and (9) hold.

E(f(x)—ful(x))? S0 if
1 N(i) 2 n
=2 ( ) Gf) -0, (11)

R =1\ /=0
fux) S fi(x) with probability one if
© [N 2
2 —2( 2 sz <,

n=1N"\ j=0

(12)

at every point x €EA4 at which
N(n)

3 8/8,(x) > h(x), (13)
p-

where
bf = [ Ju(x)8,(x) dx.

Proof: The proof of (11) is analogous to that in [15]. The
proof of (12) is based on the strong law of large numbers.
Details are left to the reader.

Let p, =n, /n be an estimate of p,. Consider an empirical
decision function.

D(x)=p,fi(x)—P fr(x) (14)
classifying every xE€A4 as coming from class 1 if D(x)> 0 and
from class 2 otherwise. By theorem 1 and theorem 2 in [7] one
obtains the following theorem.

Theorem 2: Pattern classification procedures based on (14)
are weakly (strongly) Bayes risk consistent if (13) holds almost
everywhere (with respect to the Lebesgue measure on A).

Now we are interested in the Haar orthogonal system. For this
system condition (13) holds almost everywhere without any
restrictions imposed on f; and f, (see [1, theorem 1.6.1]). Conse-
quently pattern classification procedures based on (14) are den-
sity-free Bayes risk consistent. From the construction of the
Haar orthogonal system (see [1]) it follows that G, =const j'/2.
Therefore conditions (11) and (12) take the form

n o0 N4
Lemmdo ¥ o
n- =1 n=1 N

For N(n) of type n’ they are satisfied if 0<t<1/4.

III. CONCLUDING REMARKS

The result in Theorem 2 is density-free for a Haar orthogonal
system. Similar results for discrimination rules with Parzen-
Rosenblatt kernel estimates have been obtained by Devroye and
Wagner [6].

One can extend Theorems 1 and 2 to the multivariate case
without much difficulty; treating g; as the multivariate orthogo-
nal system conclusions of these theorems hold with exactly the
same assumptions.
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Finally we note that procedures (14) may be alternatively
expressed as

n N(i)

B(x)=7 S 3 (tu—1)8,(X)g,(x),

im] j=0

‘ .={ 1, if T,=k
ki 0, otherwise.

where
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Variation of Spatial Cues in Node Arrangement
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Abstract—Directed and undirected graphs are a common message in
communication to and from computers in many different tasks. Examples

of these messages are finite element grids, signal flow graphs, flow charts,
performance evaluation review technique (PERT) charts, and scale draw-
ings of objects. Several different formats these messages might take are
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examined on a graphics display. Digraphs (directed graphs) are selected
lorstudyastbemoregeneralcaseo!mmage.(Undirectedgmphsm
digraphs in which directions of arcs do not matter.) The degreé to which
spatial cues could be utilized in learning and recalling digraphs was varied
bycontrollingthenatureandconsistencyolnodeloeationonngnphics
screen. Thirty-eight, mechanical engineering students were required to
learn three digraphs under one of four presentation conditions. Twenty-nine
completed post-tests either immediately or after one day’s delay. Results
indicate that digraphs can be learned with significantly fewer learning
errors when spatial cues are available to the subject. The increased recall
errors with delay time for a regularly ordered node arrangement indicate
that node formats where spatial cues are available but arcs may lie on top
of one another may be difficult to learn or remember for great lengths of
time. Other results are discussed. The results can be useful in guiding the
presentation of digraph data to the user for his retention in his continuing
work. Future possibilities for more detailed study of the helpful or harmful
effects of node position and organization are indicated.

I. INTRODUCTION

Many types of messages are composed of individual items
with an indicated relationship. Examples range from words and
their position in a list [1] to pictorial items and their relative
position in a scene [2]. One way to represent these messages is to
use directed or undirected (directed graphs in which the direc-
tions do not matter [3]) graphs as a basis, with the general
characteristics of the nodes and arcs indicating the particular
items and relationships of the message. Paynter [4] has asserted
that partitioning systems into networks is a basic design activity
and it has been demonstrated that a display based on directed
graph (digraph) concepts can be used as a designer—computer
interface for assembling components of a system model [5).
Communication of many messages can be viewed, at least in
part, as communication of directed graphs.

There are many ways in which the nodes and arcs of the
graph can be varied to complete the message when communi-
cated by a spatial media, ie., a drawing or computer graphic
display. They can be labeled directly, as in signal flow graphs
and PERT charts. In addition, the appearance of the nodes and
arcs can be changed, as in computer program flow charts and in
logic diagrams. Finally, they may also communicate by their
spatial position on the media as in finite element grids, data
plots [6], scale drawings [7], maps [8], and vectors [9]. When
computer graphic displays or other spatial media are used to
communicate directed graph-based messages, user performance
is often improved. Rouse [10], [11] has found fault logic displays
helpful to fault diagnosis. Corley and Allan [12], using a pipe
layout task with a computer graphic display, showed that tablet
data entry was superior to keyboard or a keyboard-tablet com-
bination.

While the format of directed graph-based messages has been
studied [1], [2], [6]-[13], little is known about the effects of
different formats on a directed graph alone. It has not been
established in the literature that spatial cues play an important
role in learning digraphs, though they commonly appear as
drawings or pictorial displays. The nodes and arcs are, in prac-
tice, organized in different formats depending on the task being
performed. The finite element specialist might need a regularly
ordered display to find mislocated or missing nodes and arcs.
The computer programmer might require nodes to be grouped
according to program structure. The PERT chart analyst may
require the critical path to occupy the center of the display, and
less critical activity arcs on the periphery. In the interactive
computer graphics environment, retention of these node place-
ments from use to use may be important in allowing spatial cues
in the appearance of the digraph to refresh the memory of the
user.

One way of gauging the effectiveness of a message format is to
study how well its content can be learned and how long it can be
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