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Flexible Neuro-Fuzzy Systems
Leszek Rutkowski, Senior Member, IEEE,and Krzysztof Cpalka

Abstract—In this paper, we derive new neuro-fuzzy structures
called flexible neuro-fuzzy inference systems or FLEXNFIS.
Based on the input–output data, we learn not only the parameters
of the membership functions but also the type of the systems
(Mamdani or logical). Moreover, we introduce: 1) softness to
fuzzy implication operators, to aggregation of rules and to
connectives of antecedents; 2) certainty weights to aggregation
of rules and to connectives of antecedents; and 3) parameterized
families of T-norms and S-norms to fuzzy implication operators,
to aggregation of rules and to connectives of antecedents. Our
approach introduces more flexibility to the structure and design
of neuro-fuzzy systems. Through computer simulations, we show
that Mamdani-type systems are more suitable to approximation
problems, whereas logical-type systems may be preferred for
classification problems.

Index Terms—Certainty weights, logical approach, Mamdani
approach, neuro-fuzzy inference systems (NFIS).

I. INTRODUCTION

I N the last decade, various neuro-fuzzy systems have been
developed (see, e.g., [4]–[7], [10], [19], [21], [26], [27],

[29]–[33], [37]–[39], [41]–[48], [64]–[66]). They combine the
natural language description of fuzzy systems and the learning
properties of neural-networks. Some of them are known in the
literature under short names like ANFIS [20], ANNBFIS [7],
DENFIS [23], FALCON [31], GARIC [2], NEFCLASS [38],
NEFPROX [37], [38], SANFIS [57] and others. In this paper,
we study a wide class of fuzzy systems trained by the back
propagation method. Following other authors we call them
neuro-fuzzy inference systems (NFIS). To emphasize their
main feature-flexibility, we also use name FLEXNFIS.

In the literature to date, two approaches [7], [44], [58], [67]
have been proposed to design fuzzy systems.

1) The first approach, called the Mamdani method, uses con-
junction for inference and disjunction to aggregate indi-
vidual rules. In the Mamdani approach, the most widely
used operators measuring the truth of the relation between
input and output are the following:

(1)

and

(2)

or more generally

(3)
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It should be emphasized that formulas (1) and (2) do
not satisfy the conditions of fuzzy implication formu-
lated by Fodor [11]. We refer to (1) and (2) as to “engi-
neering implications” (see Mendel [34], [35]) contrary to
the fuzzy implications satisfying the axiomatic definition
(see Definition 1).

The aggregation is performed by an application of
S-norm

(4)
e.g.,

(5)

It should also be noted that in most cases the aggrega-
tion of rules is performed as a part of defuzzification (see,
e.g., [35] and [58]).

2) The second paradigm applies fuzzy implications to infer-
ence and conjunction to aggregation.

Definition 1. (Fuzzy Implication):A fuzzy implication is a
function satisfying the following conditions:

(I1) if , then , for all

(I2) if , then , for all

(I3) , for all (falsity implies any-
thing).

(I4) , for all (anything implies
tautology).

(I5) (Booleanity).
Selected fuzzy implications satisfying the above conditions are
listed in Table I. In this table, implications 1–4 are examples of
an S-implication associated with an S-norm

(6)

e.g.,

(7)

For fuzzy systems with a logical implication, the aggregation is
realized by a T-norm

(8)
e.g.,

(9)

Neuro-fuzzy inference systems of a logical-type are described
in Section III-B. It should be noted that the aggregation of an-
tecedents in each rule is performed by the same formula (8) for
both Mamdani and logical-type systems.
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TABLE I
FUZZY IMPLICATIONS

It was emphasized by Yager [64], [65] that “no formal reason
exists for the preponderant use of the Mamdani method in fuzzy
logic control as opposed to the logical method other than in-
ertia.” Moreover, Yager said [66] that “as a matter of fact the
Mamdani approach has some disadvantages: its inability to dis-
tinguish more specific information in the face of the rules span
the whole input space.” This statement was an inspiration for us
to determine the type of fuzzy inference (Mamdani or logical)
in the process of learning. We decided to study the problem, de-
spite the widely held belief about the inferiority of the logical
method (see Remark 2 in Section III).

In this paper, we present a novel approach to fuzzy modeling.
The novelty is summarized as follows.

1) We propose a new class of NFIS characterized by auto-
matic determination of a fuzzy inference (Mamdani/log-
ical) in the process of learning. Consequently, the struc-
ture of the system is determined in the process of learning.
This class is based on the definition of an H-function
which becomes a T-norm or S-norm depending on a cer-
tain parameter which can be found in the process of
learning. We refer to this class asOR-type fuzzy systems.

2) We developAND-type neuro-fuzzy inference systems by
making use of the concept of flexible structures studied by
Yager and Filev [67]. TheAND-type fuzzy inference sys-
tems exhibit simultaneously Mamdani and logical type
inferences.

3) We introduce
• softness to fuzzy implication operators, to aggrega-

tion of rules and to connectives of antecedents;
• certainty weights to aggregation of rules and to con-

nectives of antecedents;
• parameterized families of T-norms and S-norms to

fuzzy implication operators, to aggregation of rules
and to connectives of antecedents

TABLE II
AND-TYPE SYSTEM

in both AND-type and OR-type neuro-fuzzy inference
systems.

4) Through computer simulations we show that Mamdani-
type systems are more suitable to approximation prob-
lems, whereas logical-type systems may be preferred for
classification problems. Moreover, we observe that the
most influential parameters in FLEXNFIS are certainty
weights (introduced in this paper in a novel way) in
connectives of antecedents and in aggregations of rules.
They significantly improve the performance of NFIS in
the process of learning.

This paper is organized into eight sections. In the next sec-
tion, we discuss and propose various flexibility issues in NFIS.
In Section III, a formal description of NFIS is presented, which
also provides a general architecture [Fig. 2 and formula (44)] of
all systems (flexible and nonflexible) studied in this paper. In
Section IV, we introduce an H-function and give a framework
for the description, unification and development of NFIS. The
OR-type andAND-type FLEXNFIS are studied in Sections V and
VI, respectively. Section VII shows the simulation results and
comparative studies with other neuro-fuzzy systems. Conclu-
sions and discussions are drawn in Section VIII.

II. FLEXIBILITY IN NFIS

A. AND-Type Compromise NFIS

Obviously, the Mamdani and the logical systems lead to dif-
ferent results and, in the literature, there are no formal proofs
as to which of them is superior. Therefore, Yager and Filev [67]
proposed to combine both methods. TheAND-type compromise
NFIS is characterized by the simultaneous appearance of Mam-
dani-type and logical-type systems. In this paper, we study the
following combination of “engineering” and fuzzy implications

(10)

e.g.,

(11)

In Section VI, we develop compromise NFIS based on formula
(10). It should be emphasized that parametercan be found in
the process of learning subject to the constraint . In
Section VII, based on the input-output data, we learn a system
type starting from as an initial value. The behavior of
theAND-type compromise NFIS is depicted in Table II.

B. OR-Type NFIS

OR-type NFIS have recently been proposed by Rutkowski
and Cpalka [46], [47]. Depending on a certain parameterthis
class of systems exhibits “more Mamdani” ( )
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TABLE III
OR-TYPE SYSTEM

or “more logical” ( ) behavior. At the bound-
aries the system becomes more of a Mamdani-type ( )
or logical-type ( ). The definition of OR-type systems
heavily relies on the concept of an H-function (see Section IV
and Rutkowski and Cpalka [46], [47]). The H-function exhibits
the behavior of fuzzy norms. More precisely, it is a T-norm for

and S-norm for . For the H-function
resembles a T-norm and for the H-function resem-
bles an S-norm. In a similar spirit, we construct OR-type impli-
cations. The parametercan be found in the process of learning
subject to the constraint . In Section VII, based
on the input-output data, we learn a system type starting from

as an initial value. The behavior of theOR-type sys-
tems is shown in Table III (see Section IV for details). Observe
that this system-contrary to theAND-type system-does not ex-
hibit simultaneously Mamdani and logical features. It is strictly
anOR-type system. TheOR-type NFIS are studied in Section V.

C. Soft NFIS

The soft versions of operators (8) and (4) were proposed by
Yager and Filev [67]. They are defined as follows:

(12)

and

(13)

where .
In the same spirit, we define softening of “engineering impli-

cation” (3) by

(14)

and logical “fuzzy implication” (6) by

(15)

where .
The soft compromise NFIS are studied in Sections V-B, V-C,

VI-B, and VI-C.

D. NFIS Realized by Parameterized Families of
T-Norms and S-Norms

Most fuzzy inference structures studied in the literature em-
ploy the triangular norms shown in Table IV. There is only a little
knowledge within the engineering community about so-called
parameterized families of T-norm and S-norms. They include

TABLE IV
BASIC TRIANGULAR NORMS

the Aczél-Alsina, Dombi, Dubois-Prade, Frank, Hamacher,
Schweizer-Sklar, Sugeno-Weber, and Yager families [28].

It should be noted that these parameterized families include
the triangular norms listed in Table IV. For example, the Dombi
family is defined as follows:

1) the Dombi T-norm
if
if
if (16)

where stands for the T-norm of a Dombi family pa-
rameterized by ;

2) the Dombi S-norm
if
if
if

(17)
where stands for the S-norm of a Dombi family pa-
rameterized by .

The parameter can be found in the process of
learning.

Obviously formula (16) defines the “engineering implica-
tion.” Combining (6) and (17) we get the fuzzy S-implication
generated by the Dombi family

(18)

The NFIS realized by parameterized families of T-norms and
S-norms are studied in Sections V-B, V-C, VI-B, and VI-C.

E. NFIS Realized by T-Norms and S-Norms With Weighted
Arguments

In this paper, we propose the weighted T-norm

(19)
Parameters and can be interpreted as antecedents of a rule.
The weights and are corresponding certainties (credibil-
ities) of both antecedents.
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Observe the following.

1) If , then the weighted T-norm (19) is re-
duced to the standard T-norm. In the context of linguistic
values we assign the truth to both antecedentsand
of the rule.

2) If , then

(20)

Therefore, the antecedent is discarded since its cer-
tainty is equal to zero. Similarly, if then the an-
tecedent vanishes

(21)

3) If and then we assume a partial
certainty of antecedents and .

The S-norm corresponding to the T-norm (19) is defined as fol-
lows:

(22)

In the same spirit we propose the weighted triangular norms

(23)

and

(24)

to aggregate individual rules in Mamdani-type and logical-type
systems, respectively. The weights and in (19), as well
as and in (23) or (24), can be found in the process of
learning subject to the constraints , , , .
In Sections V-C and VI-C we apply the weighted T-norm (19)
to a selection of significant inputs, and the weighted S-norm
(23) or T-norm (24) to a selection of important rules. The results
are depicted in the form of diagrams in Section VII (dark areas
correspond to low values of weights and vice versa).

Remark 1: It was pointed out by one of the reviewers that
designing of neuro-fuzzy systems should be a compromise
between accuracy of the model and its transparency. The mea-
sure of accuracy is usually the RMSE-criterion (approximation
problems) and percentage of correct or wrong decisions (classi-
fication problems). The measure of transparency is the number
and form of fuzzy rules obtained. It was mentioned by several
authors (see, e.g., [1] and [14]) that the lack of transparency is a
major drawback of many neuro-fuzzy systems. Most designers
focus their effort on approximation accuracy, while the issue
of transparency has received less attention. In this context our
method of weighted triangular norms seems to be a promising
tool for extracting both transparent and accurate rule-based
knowledge from empirical data. More specifically, diagrams
(weights representation) presented in Section VII can be used
for the analysis and pruning of the fuzzy-rule bases in all the
simulation examples. The FLEXNFIS realized by T-norms and
S-norms with weighted arguments are studied in Sections V-C
and VI-C. Note that our application of weights in NFIS is
different from those studied in [16], [36], [55], and [69].

III. FORMAL DESCRIPTION OF THENFIS

In this paper, we consider multi-input–single-output fuzzy
NFIS mapping , where and .

The fuzzifier performs a mapping from the observed crisp
input space to the fuzzy sets defined in . The most
commonly used fuzzifier is the singleton fuzzifier which maps

into a fuzzy set characterized
by the membership function

if
if

(25)

The fuzzy rule base consists of a collection offuzzy IF-THEN
rules, aggregated by disjunction or conjunction, in the form

IF is AND
is AND
is

THEN is

(26)

or

IF is THEN is (27)

where , , ,
are fuzzy sets characterized by membership

functions , , , whereas
are fuzzy sets characterized by membership functions ,
respectively, .

The fuzzy inference determines a mapping from the fuzzy
sets in the input space to the fuzzy sets in the output space

. Each of rules (26) determines a fuzzy set given
by the compositional rule of inference

(28)

where .
Fuzzy sets , according to the formula (28), are character-

ized by membership functions expressed by thesup-starcom-
position

(29)

where can be any operator in the class of T-norms. It is easily
seen that for a crisp input , i.e., a singleton fuzzifier (25),
formula (29) becomes

(30)

where is an “engineering implication” or fuzzy implication.
The aggregation operator, applied in order to obtain the fuzzy

set based on fuzzy sets , is the T-norm or S-norm operator,
depending on the type of fuzzy implication.

The defuzzifier performs a mapping from a fuzzy setto a
crisp point in . The COA (centre of area) method is
defined by the following formula:

(31)
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Fig. 1. Illustration of inference based on the binary implication, and Zadeh,
product, and Lukasiewicz aggregations.

or by

(32)

in the discrete form, where denotes centres of the member-
ship functions , i.e., for

(33)

For other definitions of the defuzzifier, the reader is referred to
[7].

Remark 2: Several authors (e.g., Jager [18], Mendel [35])
reported problems with the application of logical implications
to NFIS. A major problem is caused by the indeterminant part
of the membership function. We illustrate such a situation in
Fig. 1, showing the inference for binary implication (7). The
aggregation is performed by making use of Zadeh T-norm,
product T-norm and Lukasiewicz T-norm as listed in
Table IV. Observe that there is no indeterminancy in the case of
Lukasiewicz T-norm applied to aggregation.

The indicated problem can be easily resolved by the applica-
tion of a modified center of gravity defuzzifier

(34)

where

(35)

The value describes the indeterminancy that accom-
panies the corresponding part of information. It is easily seen
that in order to eliminate the indeterminant part of the member-
ship function , the informative part has to be parallely
shifted downward by the value of. Neuro-fuzzy inference sys-
tems of a logical-type with defuzzifier (34) have been studied by
Czogala and Leski [7].

Depending on implication (30), two types of NFIS can be
distinguished.

A. Nonflexible NFIS: Mamdani-Type

In this approach, the implication (30) is a T-norm (e.g., min-
imum, product, Dombi)

(36)

and the aggregated output fuzzy set is given by

(37)
Consequently, (32) takes the form

(38)

Obviously, the T-norms used to connect the antecedents in the
rule and in the “engineering implication” do not have to be the
same. Besides, they can be chosen as differentiable functions
like Dombi families.

Remark 3: If
1) the implication is of a Mamdani-type;
2) for ;

then formula (38) reduces to the well-known fuzzy system
studied by Wang [58]

(39)

B. Nonflexible NFIS: Logical-Type

In this approach, the fuzzy implication (30) is an S-implica-
tion in the form

(40)

e.g., binary implication (known as the Kleene–Dienes implica-
tion)

(41)
The aggregated output fuzzy set is given by

(42)

and formula (32) becomes

(43)
Now, we generalize both approaches described in points

and and propose a general architecture of NFIS. It is easily
seen that the systems (38) and (43) can be presented in the form

(44)
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Fig. 2. General architecture of NFIS studied in this paper (flexible and
nonflexible).

where

for Mamdani approach

for logical approach

(45)
and

for Mamdani approach
for logical approach

(46)

Moreover, the firing strength of rules is given by

(47)

The general architecture of (44) is depicted in Fig. 2.
Remark 4: It should be emphasized that (44) and the scheme

depicted in Fig. 2 are applicable to all the systems, flexible and
nonflexible, studied in this paper with different definitions of

and . Nonflexible systems are described
by (44), (45), (46) and (47), whereas flexible systems by (44)
and , , defined in Sections V and
VI. How we define the aggregation operator and
the implication operator , depends on the particular
class of the system.

Remark 5: It is well known that the basic concept of the
backpropagation algorithm, commonly used to train neural net-
works, can be also applied to any feedforward network. Let

and be a sequence of inputs and de-
sirable output signals, respectively. Based on the learning se-
quence we wish to determine
all parameters (including the system’s typeor ) and weights
of NFIS such that

(48)

is minimized, were is given (44). The steepest descent op-
timization algorithm can be applied to solve this problem. For

Fig. 3. 3-D plot of function (53).

instance, the parameters, , are trained by the
iterative procedure

(49)

Directly calculating partial derivatives in recursion like (49) is
rather complicated. Therefore, we recall that our NFIS has a lay-
ered architecture (Fig. 2) and apply the idea of back propagation
to train the system. The exact recursions reflect that idea, how-
ever, they are not a copy of the standard backpropagation. For
details, the reader is referred to our previous paper [47].

IV. FRAMEWORK FOR DESCRIPTION, UNIFICATION, AND

DEVELOPMENT OFNFIS

In this section the following properties of dual T-norms and
dual S-norms will be used

(50)

(51)

Our goal is to find a framework for the description, unification
and development of all systems studied in this paper. We achieve
this goal using two definitions (see Rutkowski and Cpalka [46]).

Definition 2. (Compromise Operator):A function

(52)

given by

(53)

is called a compromise operator where and
.

Observe that

for
for
for

(54)

Obviously, function is a strong negation (see, e.g., [28]) for
. The 3-D plot of function (53) is depicted in Fig. 3.

Remark 6: The formula (50) can be rewritten with the nota-
tion of definition 2

(55)
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for . Apparently

(56)

for .
The right-hand sides of (55) and (56) can be written as fol-

lows:

(57)

with or . One may wish to vary the parameterin
(57) from 0 to 1. This concept leads to the following definition,
allowing us to switch smoothly between S-norm and T-norm:

Definition 3. (H-Function): A function

(58)

given by

(59)
is called an H-function where .

Observe that
for
for
for

(60)

It is easily seen that for the H-function resembles
a T-norm and for the H-function resembles an
S-norm.

Example 1. (An Example of H-Function):We will show how
to switch smoothly from T-norm to S-norm by making use of
definition 3. Let and the standard min-norm and max-
conorm are chosen

(61)

(62)

The H-function generated by formulas (61) and (62) takes the
form

(63)

and varies form (61) to (62) asgoes from zero to one.
In Fig. 4, we illustrate function (63) for , ,

, , .
Example 2. (An Example of H-Implication):In this example,

we illustrate how an H-implication based on definition three
changes from “engineering implication” (1) to fuzzy implica-
tion (7). Let

(64)

and

(65)

Fig. 4. 3-D plot of function (63) for (a)� = 0:00. (b)� = 0:15. (c)� = 0:50.
(d) � = 0:85. (e)� = 1:00.

Fig. 5. 3-D plot of function (66) for (a)� = 0:00. (b)� = 0:15. (c)� = 0:50.
(d) � = 0:85. (e)� = 1:00.

Then

(66)

goes from (64) to (65) as varies from zero to one.
In Fig. 5, we illustrate function (66) for , ,

, , .
Remark 7: It is easily seen that the nonflexible NFIS given

by formulas (45)–(47) can be alternatively presented by making
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use of definition 3 with or , shown in (67)–(69) at
the bottom of the page.

V. OR-TYPE FLEXNFIS

The OR-type NFIS are based on definition 3 of the H-func-
tion. All the systems in this section are described by a general
formula (44), see remark 4, with various definitions of ,

and .

A. Basic NFIS:OR-Type

The basic neuro-fuzzy system of anOR-type is given as fol-
lows:

(70)

(71)

(72)

Observe that system (70)–(72) is Mamdani-type for , like
Mamdani-type for , undetermined for ,
like logical-type for and logical-type for .
It is worth noticing that parametercan be learned and conse-
quently the type of the system can be determined in the process
of learning.

B. Soft NFIS:OR-Type

In this section we propose soft NFIS based on soft fuzzy
norms (12) and (13). These systems are characterized by

1) soft strength of firing controlled by parameter;
2) soft implication controlled by parameter ;
3) soft aggregation of rules controlled by parameter .

Moreover, we assume that fuzzy norms (and H-function) in the
connection of antecedents, implication and aggregation of rules
are parameterized by parameters, , , respectively.
We use notation to indicate parameterized families
analogously to (16) and (17).

The soft compromise NFIS of anOR-type are defined as fol-
lows:

(73)

(74)

(75)
Observe that system (73)–(75) is

1) soft Mamdani-type NFIS for ;
2) soft logical-type NFIS for ;
3) soft like Mamdani-type NFIS for ;
4) soft like logical-type NFIS for ;
5) undetermined for .

C. Weighted Soft NFIS:OR-Type

We insert weights to the antecedents and to the aggregation
operator of the rules in systemORII:

1) , , ;
2) , .

Consequently, we get the weighted soft NFIS of anOR-type

(76)

(77)

(78)

In the ORIII system we use parameterized families and

parameterized families with weights analogously to (19).

(67)

for Mamdani approach

for logical approach
(68)

for Mamdani approach
for logical approach

(69)
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More specifically, in (76) and (78), we use the following defini-
tion:

(79)

where

(80)

VI. AND-TYPE NFIS

In this section, we studyAND-type neuro-fuzzy inference sys-
tems. They will be presented in two alternative forms: by using
T and S-norms or by using an H-function with or .

A. Basic NFIS:AND-Type

The basic neuro-fuzzy inference systems of anAND-type em-
ploy combinations of “engineering” and fuzzy implication, see,
e.g., (10) and (11). The systems are given by the formula:

(81)

(82)

(83)

or

(84)

(85)

(86)

It is easily seen that the above system is of a Mamdani-type for
and logical-type for .

B. Soft NFIS:AND-Type

In this section, we propose soft compromise NFIS based on
soft fuzzy norms (12) and (13).

The soft compromise NFIS of anAND-type are given by

(87)

(88)

(89)

Formulas (87)–(89) describe the soft compromise NFIS –
AND-type in terms of parameterized families and . Al-
ternatively, this system can be presented by making use of the
H-function definition

(90)

(91)
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(92)

C. Weighted Soft NFIS:AND-Type

Introducing weights to soft NFIS we get the weighted soft
NFIS of anAND-type

(93)

(94)

(95)

Alternatively, it can be expressed by

(96)

(97)

TABLE V
EXPERIMENTAL RESULTS

TABLE VI
COMPARISONTABLE

(98)
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Fig. 6. Weights representation in the Glass Identification problemw 2

[0; 1], w 2 [0; 1], i = 1; . . . ; 9, k = 1; . . . ; 2 (dark areas correspond to
low values and vice versa).

TABLE VII
EXPERIMENTAL RESULTS

VII. PERFORMANCEEVALUATION

We have conducted very extensive simulations in order to test
our new structures, find an appropriate system type and compare
the results with other authors. The results are summarized and
discussed in Section VIII. We present 11 simulations by making

TABLE VIII
COMPARISONTABLE

TABLE IX
EXPERIMENTAL RESULTS

use of commonly known benchmarks. Each of the simulations
is designed in the same fashion:

1) In the first experiment, based on the input-output data, we
learn the parameters of the membership functions and a
system type of theOR I neuro-fuzzy inference
system. It will be seen that the optimal values of, deter-
mined by a gradient procedure, are either zero or one.

2) In the second experiment, we learn the parameters of the
membership functions and a system type of the
AND I neuro-fuzzy inference system. It will be seen that
optimal values of , determined by a gradient procedure,
are either zero or one.
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TABLE X
COMPARISONTABLE

Fig. 7. Weights representation in the Iris problemw 2 [0; 1], w 2

[0; 1], i = 1; . . . ; 4, k = 1; . . . ; 2 (dark areas correspond to low values and
vice versa).

3) In the third experiment, we learn the parameters of the
membership functions of theOR I/AND I neuro-fuzzy in-
ference systems choosing values ofand as opposite
of those obtained in 1) and 2). Obviously, we expect a
worse performance of both systems. Note thatOR-type
are equivalent toAND-type systems if or

.
4) In the fourth experiment, we learn the parameters of the

membership functions, system type of theORII
neuro-fuzzy inference system and soft parameters

, , . Moreover, we learn
parameters , , of
the Dombi norm used for the connection of antecedents,
implication and aggregation of rules, respectively.

5) In the fifth experiment, we learn the same parameters as in
the fourth experiment and, moreover, the weights

, , , in the antecedents
of rules and weights , , of the
aggregation operator of the rules. In all diagrams (weights
representation) we separate , ,

, from , , by a
vertical dashed line.

TABLE XI
EXPERIMENTAL RESULTS

TABLE XII
COMPARISONTABLE

The parameters learned in experiments 1)-5) can be determined
by standard recursive gradient procedures with the constraints
listed above. In order to avoid arduous gradient calculations, we
have developed [47] a universal network trainer that can tune the
parameters and weights of FLEXNFIS based on their architec-
tures. The idea of the trainer comes from the backpropagation
method. It should be noted that Gaussian membership functions
are used in all the experiments.

A. Glass Identification

The Glass Identification problem [56] contains 214 instances
and each instance is described by nine attributes (RI: refractive
index, Na: sodium, Mg: magnesium, Al: aluminum, Si: silicon,
K: potassium, Ca: calcium, Ba: barium, Fe: iron). All attributes
are continuous. There are two classes: window glass and non-
window glass. In our experiments, all sets are divided into a
learning sequence (150 sets) and testing sequence (64 sets). The
study of classification of types of glass was motivated by crim-
inological investigation. At the scene of the crime, the glass left



566 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

Fig. 8. Weights representation in the HANG problemw 2 [0; 1], w 2

[0; 1], i = 1; . . . ; 2, k = 1; . . . ; 4 (dark areas correspond to low values and
vice versa).

TABLE XIII
EXPERIMENTAL RESULTS

can be used as evidence if it is correctly identified. The experi-
mental results are depicted in Table V, Table VI, and Fig. 6.

B. Ionosphere

This radar data was collected by a system in Goose Bay,
Labrador [56]. This system consists of a phased array of 16 high-

TABLE XIV
COMPARISONTABLE

Fig. 9. Weights representation in the Modeling of Box and Jenkins Gas
Furnace problemw 2 [0; 1], w 2 [0; 1], i = 1; . . . ; 6, k = 1; . . . ; 4
(dark areas correspond to low values and vice versa).

frequency antennas with a total transmitted power in the order
of 6.4 kW. The targets were free electrons in the ionosphere.
The database is composed of 34 continuous attributes plus the
class variable, using 351 examples. In our experiments, all sets
are divided into a learning sequence (246 sets) and testing se-
quence (105 sets), , and after learning all weights
are equal to one. The experimental results are depicted in Ta-
bles VII and VIII.

C. Iris

The Iris data [56] is a common benchmark in classification
and pattern recognition studies. It contains 50 measurements of
four features (sepal length in cm, sepal width in cm, petal length
in cm, petal width in cm) from each of three species: iris setosa,
iris versicolor, and iris virginica. In our experiments, all sets are
divided into a learning sequence (105 sets) and testing sequence
(45 sets). The experimental results are depicted in Table IX,
Table X, and Fig. 7.
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TABLE XV
EXPERIMENTAL RESULTS

TABLE XVI
COMPARISONTABLE

D. Modeling of a Static Nonlinear Function (HANG)

In this example, a double-input and single output static func-
tion is chosen to be a target system for the new fuzzy modeling
strategy. This function is represented as

(99)

From the evenly distributed grid point of the input range
of the preceding equation, 50 training data pairs were

Fig. 10. Weights representation in the nonlinear dynamic plant problem
w 2 [0; 1], w 2 [0; 1], i = 1; . . . ; 2, k = 1; . . . ; 5 (dark areas
correspond to low values and vice versa).

TABLE XVII
EXPERIMENTAL RESULTS

obtained. The experimental results are depicted in Table XI,
Table XII, and Fig. 8.

E. Modeling of Box and Jenkins Gas Furnace

The Box and Jenkins Gas Furnace data consists of 296 mea-
surements of a gas furnace system: the input measurement
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TABLE XIX
EXPERIMENTAL RESULTS

TABLE XX
COMPARISONTABLE

is the gas flow rate into the furnace and the output measure-
ment is the CO concentration in outlet gas. The sampling in-
terval is 9 s. The experimental results are depicted in Table XIII,
Table XIV, and Fig. 9.

TABLE XVIII
COMPARISONTABLE

Fig. 11. Weights representation in the Pima Indians Diabetes problemw 2

[0; 1], w 2 [0; 1], i = 1; . . . ; 8, k = 1; . . . ; 2 (dark areas correspond to
low values and vice versa).

F. Nonlinear Dynamic Plant

We consider the second-order nonlinear plant studied by
Wang and Yen [61]

(100)

with

(101)
The goal is to approximate the nonlinear component

of the plant with a fuzzy model.
In [61], 400 simulated data were generated from the plant
model (101). Starting from the equilibrium state (0, 0), 200
samples of identification data were obtained with a random
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Fig. 12. Weights representation in the Rice Taste problemw 2 [0; 1],
w 2 [0; 1], i = 1; . . . ; 5, k = 1; . . . ; 5 (dark areas correspond to low
values and vice versa).

TABLE XXI
EXPERIMENTAL RESULTS

input signal uniformly distributed in [ 1.5, 1.5], followed
by 200 samples of evaluation data obtained using a sinusoidal
input signal . The experimental results are
depicted in Table XV, Table XVI, and Fig. 10.

TABLE XXII
COMPARISONTABLE

Fig. 13. Weights representation in the Monk 1 problemw 2 [0; 1],w 2

[0; 1], i = 1; . . . ; 6, k = 1; . . . ; 7 (dark areas correspond to low values and
vice versa).

G. Pima Indians Diabetes

The Pima Indians Diabetes data [56] contains two classes,
eight attributes (number of times pregnant, plasma glucose con-
centration in an oral glucose tolerance test, diastolic blood pres-
sure (mm Hg), triceps skin fold thickness (mm), 2-h serum in-
sulin (mu U/ml), body mass index [weight in kg/(height in m)),
diabetes pedigree function, age (years)]. We consider 768 in-
stances, 500 (65.1%) healthy and 268 (34.9%) diabetes cases.
All patients were females at least 21 years old, of Pima Indian
heritage. In our experiments, all sets are divided into a learning
sequence (576 sets) and testing sequence (192 sets). The exper-
imental results are depicted in Table XVII, Table XVIII, and
Fig. 11.

H. Rice Taste

The Rice Taste data contains 105 instances and each instance
is described by five attributes: flavor, appearance, taste, sticki-
ness, toughness, and overall evaluation. In simulations the input-
output pairs of the rice taste data were normalized in the in-
terval [0, 1]. The experimental results are depicted in Table XIX,
Table XX, and Fig. 12.

I. The Three Monk’s Problems

The Three Monk’s Problems [56] are artificial, small prob-
lems designed to test machine learning algorithms. Each of the
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TABLE XXIII
EXPERIMENTAL RESULTS

TABLE XXIV
COMPARISONTABLE

three monks problem requires determining whether an object
described by six features (head shape, body shape, is smiling,
holding, jacket color, has tie) is a monk or not.

There are 432 combinations of the six symbolic attributes.
In the first problem (Monk1), 124 cases were randomly se-
lected for the training set, in the second problem (Monk2) 169
cases, and in the third problem (Monk3) 122 cases, of which
5% were misclassifications introducing some noise in the data.
The experimental results are depicted in Table XXI, Table XXII,
and Fig. 13 (Monk1), Table XXIII, Table XXIV, and Fig. 14
(Monk2), Table XXV, Table XXVI, and Fig. 15 (Monk3).

J. Wine Recognition

The Wine data [56] contains the chemical analysis of 178
wines grown in the same region of Italy but derived from three
different vineyards. The 13 continuous attributes available for
classification are: alcohol, malic acid, ash, alcalinity of ash,
magnesium, total phenols, flavanoids, nonflavanoid phenols,

Fig. 14. Weights representation in the Monk 2 problemw 2 [0; 1],w 2

[0; 1], i = 1; . . . ; 6, k = 1; . . . ; 7 (dark areas correspond to low values and
vice versa).

TABLE XXV
EXPERIMENTAL RESULTS

proanthocyanins, color intensity, hue, OD280/OD315 of diluted
wines and proline. In our experiments all sets are divided into a
learning sequence (125 sets) and testing sequence (53 sets). The
experimental results are depicted in Table XXVII, Table XXIII,
and Fig. 16.
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TABLE XXVI
COMPARISONTABLE

Fig. 15. Weights representation in the Monk 3 problemw 2 [0; 1],w 2

[0; 1], i = 1; . . . ; 6, k = 1; . . . ; 7 (dark areas correspond to low values and
vice versa).

K. Wisconsin Breast Cancer Data

The Wisconsin Breast Cancer data [56] contains 699 in-
stances (of which 16 instances have a single missing attribute)
and each instance is described by nine attributes (clump
thickness, uniformity of cell size, uniformity of cell shape,
marginal adhesion, single epithelial cell size, bare nuclei,
bland chromatin, normal nucleoli, mitoses). We removed those
16 instances and used the remaining 683 instances. In our
experiments, all sets are divided into a learning sequence (478
sets) and testing sequence (205 sets). The experimental results
are depicted in Table XXIX, Table XXX, and Fig. 17.

VIII. F INAL REMARKS

In this paper, we have presented new neuro-fuzzy structures.
They are characterized as follows

1) TheAND-type system is a combination, controlled by pa-
rameter , of Mamdani-type and logical-type sys-
tems. In the process of learning only one type of system
is established ( or ).

2) TheOR-type system is “more Mamdani” ( ) or
“more logical” ( ). In the process of learning
one gets or .

3) TheOR-type is equivalent to theAND-type system if
(Mamdani-type) or (logical-type).

TABLE XXVII
EXPERIMENTAL RESULTS

TABLE XXVIII
COMPARISONTABLE

4) TheOR-type system is less complicated than theAND-type
system from a computational point of view. Both systems
produce the same type of inference (Mamdani or logical)
in the process of learning.

5) The most influential parameters are certainty weights
, , and

, . They significantly im-
prove the performance of the system in the process of
learning.

6) The influence of soft parameters , ,
on the performance of the system varies

depending on the problem.
The main advantage of our approach is the possibility of
learning a system type. The results of simulations are given in
Table XXXI.
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Fig. 16. Weights representation in the Wine Recognition problemw 2

[0; 1], w 2 [0; 1], i = 1; . . . ; 13, k = 1; . . . ; 3 (dark areas correspond
to low values and vice versa).

TABLE XXIX
EXPERIMENTAL RESULTS

We conclude that Mamdani-type systems are more suitable to
approximation problems, whereas logical-type systems may be
preferred for classification problems. It should be emphasized
that the results in simulations A, B, C, D, G, H, I, and J outper-
form the best results known in the literature, although it was not
the main goal of our paper.

TABLE XXX
COMPARISONTABLE

Fig. 17. Weights representation in the Wisconsin Breast Cancer problem
w 2 [0; 1], w 2 [0; 1], i = 1; . . . ; 9, k = 1; . . . ; 2 (dark areas
correspond to low values and vice versa).

TABLE XXXI
RESULTS OFSIMULATIONS
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